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The problem of oblique impact on a halfspace composed of material that satisfies the
equations proposed by Grigorian [1] is investigated. A study is made of motions which in
the elastic case correspond to longitndinal and transverse waves. If the shear modulus and
the quantity dp/dp are constant, the solution of the problem can be written down in ex-
plicit form,

Problems of soil dynamics are usually solved making the assumption that the relation
between the uniaxial stress o and the strain € is given. This relation can be obtained
either as an experimental result or by assuming, as in [2-5], that the pressure p is a
function of the cubic dilatation @ alone and that the secondinvariant of the stress tensor is
a function of the pressure (the plasticity condition). By considering the symmetry in the
formulation of the problem, one can derive from the plasticity condition the relation o (p),
from which o (€) is found. In the formulation of the present problem a stricter symmetry
condition has been adopted. This involves significant complications because it leads to
the fact that o depends not only on € but also on the shear stress 7. The model proposed
by Grigorian [1] can be used to describe the medium. This model enasbles one, at least
in principle, to deacribe an arbitrary elastic-plastic soil motion. However, the regrettable
fact is that it has not been thoroughly tested. The experimental test carried out in [6] led
to a concrete form of the plasticity condition and the function p (€). However, the equa-
tions of this model that generalizes Hooke's law has not been tested at all, since there
are no solutions of these equations available to be put to experimental test. The results
of the present paper can clearly be used for testing Grigorian’s model. It should be pointed
out that a similar problem has been solved by Antsiferov and Rakhmatulin [7]. However,
they adopted an entirely different model for soil, and the results of the present paper are
significantly different from those which they obtained.

1. Let us consider an elastic-plastic halfspace and an associated system of coordinates.
The y - and z-axes lie in the boundary plane and the x-axis is directed into the interior.
We will use the following notation: u, and v are the velocities along the x- and y-axes,
0 = Oyyy T = Oy, Oyy and g are components of the stress teasor, and

T = 1/2 (Uyu - 0'zz)q K = Do dp /dp
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The following problem will be considered

0 = Oy, T = Ty T = Tos u:O, v=20 for t<0,z‘>0
0 = 0y, T=7T;, T =T for >0, z=0

i.e., on the boundary o (f) and 7(¢) are step functions. Assuming that nothing depends on
y or z, the required quantities are o (x, &}, 7 (x, ¢}, and y (x, #).

We will assume that the quantity 1 — po/p is small in comparison with unity. Then,
the convective terms in the equation of Grigorian can be neglected, and the problem leads

to the solution of the system of equations

ou ds v ot oY . ot _ 93
Po&=(—,ﬁ, pda"—tr—a—x, —67+M’—0, &_*_}"T—Gax
g du
a(@ + P+ 1P+ vt =F (p), %~ — K% W

_ S+ p du v v F'(p) dp
V=Gt am tCTg () o

with the above-formulated boundary and initial conditions. The third equation in (1.1) has
been obtained from the relation

)
24 op __ 1 g op

9t po 8t (1.2)

and the continuity equation

2 I
J o ot T 35 =0 (1.3)
- The quantities F (p) and A were determined in [1].
V4
1f the shear occurs plastically, then A > 0; in the other
FIG. 1 cases A =0, and system (1.1) then reduces to the usual equa-

tions in the theory of elasticity.

The first equation in system (1.1) is the equation of motion, the second equation is
the generalized Hooke's law, and the third equation is the plasticity condition, where
F (p) is an experimentally determined plasticity function.

The pressure p is assumed to depend on p and the direction of the process. A typical

p {p) relation is shown in Fig. 1.

2. We will construct some solutions of system (1.1) without attempting to satisfy the
initial conditions. Let us write out the equations for the characteristics of system (1.1).
By definition, the characteristics of a system of first-order differential equations are
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curves x = f (t) having the following properties: if all the unknown functions appearing in
the system are given on such a curve, the derivatives of these functions will not be
uniquely defined. Denoting differention along the curve f by d/ds, for an arbitrary function
w given on f we have
w ow ow

a—sds= a—xdx+-5idt (2.1)

System (1.1) contains the six unknowns u, v, 0, T, p, and y; the twenty partial de-
rivatives are to be determined by the ten equations of system (1.1) and by ten equations
of the type (2.1). Since the resulting system is linear in the partial derivatives, all the
derivatives can be determined uniquely when the determinant is nonzero.

Thus, the condition for the characteristics f (f) is the vanishing of this determinant,
which has the form

dz2 d¢ 0 0 0 O O O O 0O 0 0
0 O dzr d¢. 0 0 0 O O O 0 0
0 0 O O de dt 0 0O O O 0 0
0 0 0 0 0O O dx dt 0 O 0 0
O 0 0 0 0 0 0 O dr at 0 0
o 0 0 0 0 O o0 O 0 O dr dt
0 pp 0 0 -1 0 0 0 0 0 0 O
0 0 0 Po 0 0o —1 0 0 0 0 0 (2.1.)
a®* 0 a®* O O O O 0 O a® 0 1
a® 0 ag* 0 0 O O 1 O aw!® 0 O
e 0 g 0 0 14 0 O O ae? 0 O
K 0 0 0 0 0 O O O 14 0o 0
T F’
alng;‘—i(-P')pTv ass—":GF(‘;) L] 0109—- zﬁ'g; T
s o __ F(p)
w =6 FE v a0 =G 1], e =—gpgyT
s 2 4 tc+p ___FO
wt =GR — 3], et =GEER, a = — Gt

Expanding this determinant (which is not difficult because of the large number of

zeros) and setting it equal to zero, we obtain the equation for the characteristics of the
system

e LR T B
-{—4627 + GK I.s"’ + k<82 1}:)%] =0

dz\? L F(p) _
pO(dT) =a21 1——?@—)'—821 ——— '_k

(2.2)

It should be noted [4] that s 1 and k < 1. When y = 0, equation (2.2) reduces to
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O (@ 8 =a —[(1+ k) K + s (4—) Gla® + GKs (s + B) = 0 2.9

Equation (2.2) has been cbtained without any assumption whatsoever concerning the
quantities K, G, and k. In the following we will assume that G < (1 + k) K; this assumption
does not make the problem linear, because the second equation in (1.1) is nonlinear. More-
over, we will restrict ourselves to the case where y =0 and will only consider motions for
which s is constant along the characteristics. Since a? depends on s alone, the character-

istics are straight lines.

In view of the fact that the boundary conditions have the form of step functions, the
motion can be assumed to be self-modelling. Under this assumption it is possible to const-

ruct some solutions of system (1.1).

As a consequence of the self-modelling, all quantities will depend only on %/t = a/pol/’ .

It is clear from (2.3) that a depends only on s, because all quantities appearing in (1.1)

can be assumed to depend only on s.

From the self-modelling we have

a a 0 (2.4)
 Ti 2.4
ot Voo 0%
Therefore the first equation (1.1) can be written in the form
ou ds
g% 2 2.5
o T ot @9

Hence, making use of the third equation (1.1), we have, respectively,

a? dp _ 0p 5. dp 2 + 0s .
—Fa -~ a7V a 26
2 K CETI dp
W a2~(1+ks) [\"l I (P) e sz‘ (27)
or dVF KK R
ds T @ (kA (2.8)
Integration of (2.8) yields
——— . kK (2.9)
VEW) = VF o eso (\ mm—ammr )
and according to (2.2) we have o
t=V1—= sV F(p) (2.10)

The remaining quantities appearing in the system can be obtained by elementary
methods. Replacing a in (2.9) by the roots of equation (2.3), we obtain a family of solu-
tions of system (1.1), which can be used for the construction of solutions of the boundary

value problems.



Plane elastic-plastic waves 603

Equation (2.3) has four roots : two are positive and two are negative. The positive
ones correspond to waves propagating in the positive direction along the x-axis. Further,
the solution obtained by substituting the larger positive root (2.3) into (2.9) will be called
a longitudinal wave ; that obtained by substituting the smaller one will be called a trans-

verse wave.

3. Now, let us examine equations (2.3). We will assume that (2.3) is an eqaauion in a?.
Let the larger root be denoted by a; and the smaller one by a ;. We will obtain an estimate
of 52 by 1 L I3

P SREPY S =
[+] unciions of §.

Solving (2.3), we obtain 3.1

202 = (1 4 ks) K + Yy (4 — 52 G + ({1 + ks) K - Yy (4 — 5% G)* — 4GKs (s + k)} "/
(3.1)

22 = (1 4 ks) K + Y3 (4 — %) G 4 {[(1 4 ks )K — 5 (4 — ) GI* + 4GKR)'"
for s <1

A=U+ k)Y —s) —s(s+ k) =11 —s) (44 ks) >0 (3.1a)
Therefore

a? < (1 + ks) K, e’ > (1 + k) K (3.2)

This follows from the fact that for the relation

za =0+ B+ V@ — p+s (3.20)
we always have
z; < min (a, f), z, > max (@, f)) (3.2b)

Further, a very elementary analysis shows that da,2/ds >0 and 4,3 < G, One can
divide the possible values of the parameters into three cases in accordance with the
character of da: /ds.

(. It
"K>%(\1+E‘Zk}) G (3.3)
then dag?/ds >0 and a,2 > K + 4/,G for all values of s.
@. 1f
st i O > 6 (3.4

then 4,2 > K +- %/,G and the derivative da;/ds changes sign in the interval [o, 1].
(3). If

453G > kK (3.5)
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then the derivative da,3/ds < 0, a2 < K + %/3G when 1 >> 5 > 5, wheres, = 3kK / 4¢,.

4. Now we will consider the limit of applicability of system (1.1). System (1.1) des-
cribes the motion with plastic shear. The plasticity condition for shear will be A > 0. We
will clarify when this condition can be employed. Making use of the third 2quation in
system (1.1), we will writc (2.6) in the form

‘ / [a2 - (1 + ;)K]ZI; = ;3 Vls—szg: .1

With the aid of (2.4) and the first equation in (1.1), we

transform the second equation in (1.1) into

1/6G or

/2/ }V__T_(zr—i)a—‘— (4.2)
_ Y3 (G—a?[a%s—(s k) K]ou
/ —_Z_ a’t V1__sz ox

where account has been taken of (4.1).
FIG. 2
By using (2.3) it is not difficult to show that

(4.2) cen be transformed into the form
V3 2 4 du
V3 12 4 q\]o 4.3
2s VF[a (K+ JG)}% 4.9

Thus, if the material is compressed, then during loading or unloading the condition

A> 0 yields, respectively,
a® < K + 456G (Ou [ 8z < 0) (4.9
at > K + 4,6 (Ou / 8z > 0) (4.5)

With a transverse wave (@, < G) the shearing occurs plastically during loading and
elastically during unloading for all values of the parameters. With longitudinal waves in
cases (1), (2) and (3)(s < sa) the shearing occurs plastically during loading and elastically
during unloading ; in case (3)(s > s,) the shearing is elastic during unloading and plastic
during loading. These results differ from the results in [4] (p. 89) where an error has been

made.

5. Now we will construct the solution of the original boundary value problem by combin-
ing transverse and longitudinal waves and assuming that a uniform motion is also a solu-
tion of (1.1). We will set y =0 and limit ourselves to the case where the loading branch in
the (p, p)-diagram satisfied condition (3.5) and the unloading branch satisfies (3.3). In the
(x, t)-plane we have the following picture: regions 1, 3, and 5 are regions of uniform move-
ment, region 2 is the region of propagation of the longitudinal wave, and region 4 that of
the transverse wave. In region 1 we have 0 = 0o and 7= 75, and in region 5 we have
o =0, , and 7= T, ; in region 3 we will set o = 0,, and 7= 7;. Introducing the notation
[F (p)] = 2, the third equation in (1.1) uniquely determines the relation between g, 7 and z, 7.
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Henceforth the state of stress will be described by the quantities z, 7, where we have set

=[F ()"

If we consider the time variation of the state of stress with a fixed value of x, we
see that at first it is constant. Then, as the longitudinal wave passes, the state changes
z) according to formulas (2.9) and (2.10) with a? = a: from
2o, To t0 23, T3. Then, it remains constant until it is
changed by the transverse wave to z,, 7, and remains

constant.

Formulas (2.9) and (2.10) can be regarded as para-
metric representations of curves in the ¢z, 7) - plane.
There are two families of these curves. The first family
corresponds to different transverse waves (a? = a:) and
the second family to longitudinal waves (a? = a;); the

choice of a curve from a family is made by fixing z,. Let

us take the point (zg, 7) in the (z, 7) -plane and draw

the curves of the first and second family passing through
Fl1G. 3 it. The point 2T, in Fig. 3 has been denoted by 1, and
the curve 1-4 represents the curve of possible passages
with fixed x on a transverse compression wave, and curve 1-3 on a longitudinal compress-

ion wave, etc. The five possible cases correspond to point (z,, 7)) lying in: (a) region

z

FIG. 4 FIG. 5

(1.3.4), (b) in region (1.2.3), etc. When the solution of the problem exists, point (z;, T;)
myst also lie on curve 1-3 and, in addition, the curve of the second family issuing from

(z,, 7,) must pass through (z,, 7;).

This means that

z, = zo exp O, (30’ S2)s 2z, = 25 exp @, (sy, 5y)

(Di (§7 7]) X (1 —{—ks) K (52> 59, 1< 82)

€
kY

Hence we obtain the equation for s,
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zp exp (D, (55, 8) + Dy (50 I = 2 (5.1)

When s, = s, the left-hand side of (5.1) is smaller than the right-hand side, provided
the left-hand side determines some point on the curve 1-4 and (z,, 7;) lies above this
curve. When s, » 1, the left-hand side of (5.1) tends to infinity. Therefore there is an s,

such that the left-hand side is equal to the right-hand side. This settles the matter.

Figures 4 and 5 show the dependence at a fixed station x of z and 7 on time for the
case considered. The remaining cases can be treated analogously. It is possible to treat
other boundary value problems for system (1.1). Their solution is constructed in a similar

way.

Apart from the continuous solutions of (1.1) considered in section 3, it is possible
to treat discontinuous solutions corresponding to shock waves. In accordance with the
stability criterion, the velocity of a shock wave must be greater than the velocities of
small disturbances ahead of the wave front and less than those behind the wave front.
Hence it follows that a compressive shock wave exists if da/dp > 0 and a rarefaction shock

wave exists if da/dp <0.
We have
dp = 2ads dp (5.2)
From (2.7) and (3.2) we have ds/dp > 0 an a longitudinal wave and ds/dp <0 on a trans-

verse wave. Now, from (5.2) it is clear that a shock wave can exist only in case (2) and

that it will be a rarefaction wave.

In the physically important case where the loading part of the (p, p)-diagram satisfies

condition (3.5), and the unloading part satisfies (3.3), a shock wave cannot exist.

In conclusion the author wishes to thank N.V. Zvolinskii for valuable advice and

suggestions.
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