
PLANE ELASTIC-PLASTIC WAVES 

(0 PLOSKOI UPRUQO-PLASTICHESKOI VOLNE) 

Phfhf Vol. 29. No. 3, 1965, pp. 509515 

A.M. SKOBEEV 

(Moscow) 

(Rccaivcd November 28, 1964) 

The problem of oblique impact on a halfspace composed of material that satisfies the 

equations proposed by Grigorian [l] is investigated. A study is made of motions which in 

the elastic case correspond to longitudinal and transverse waves. If the shear modulus and 

the quantity dp/dp are constant, the solution of the problem can be written down in es- 

plicit form. 

Problems of soil dynamics are usually solved making the assumption that the relation 

between the nniaxial stress u and the strain 6 is given. This relation can be obtained 

either as an experimental result or by assuming, as in [2 - 51, that the pressure p ia a 

function of the cubic dilatation 8 alone and that the secondinvariant of the stress tensor is 

a function of the pressure (the plasticity condition). By considering the symmetry in the 

formulation of the problem, one can derive from the plasticity condition the relation u (p), 

from which 0 (El is found. In the formulation of the present problem a stricter symmetry 

condition has been adopted. This involves significant complications because it leads to 

the fact that u depends not only on E but also on the shear stress T. The model proposed 

by Grigorian [l] can be used to describe the medium. This model enables one, at least 

in principle, to describe an arbitrary elastic-plastic soil motion. However, the regrettable 

fact is that it has not been thoroughly tested. The experimental test carried out in [6] led 

to a concrete form of the plasticity condition and the function p (E). However. the equa- 

tions of this model that generalizes Hooke’s law has not been tested at all, since there 

are no solutions of these equations available to be put to experimental test. The results 

of the present paper can clearly be used for testing Grigorian’s model. It should be pointed 

out that a similar problem has heen solved by Antsiferov and Rakhmatulin [?I. However, 

they adopted an entirely different model for soil, and the results of the present paper are 

significantly different from those which they obtained. 

1. Let us consider an elastic-plastic halfspace and an associated system of coordinates. 

The y- and z-axes lie in the boundary plane and the x-axis is directed into the interior. 

We will use the following notation: II, and v are the velocities along the x- and y-axes, 

fJ = CXX, z = (Jry, ‘Jyy and ffz* are components of the stress tensor, and 

7 = t/z @YU - (J**), K = p. dp / dp 
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The following problem will be considered 

i.e., on the boundary u (8) and 7(t) are step functions. Assuming that nothing depends on 

y or I, the required quantitiee are o (x, t), 7(x, t), and y (x, t). 

We will assume that the quantity 1 - pe/p is small in comparison with unity. Then, 

the eonva&ive terms in the equation of Grlgorfan can be neglected, and the problem leads 

to the solution of the system of equations 

(1.1) 

&G’+P au z av F’(P) aP _-+$-_-_-__ 
F (PI 8% F(P) ax 2F (P) at 

with the above-formulated boundary and initial conditions. T‘he third equation in (1.1) has 

been obtained from the relation 

P u ap .LKap 
5 = p. at (1.2) 

and the continuity equation 

f J 6$+&o (1.3) 

The quantities F (p) and h were determined in [I]. 

? % /p 

FIG. 1 

If the shear occurs plastically, then A > 0 ; in the other 

cases A = 0, and system (1.1) then reduces to the usual equa- 

tions in the theory of elasticity. 

The first aqnation in system (1.1) is the equation of motion, the second equation is 

the generalized Hooke’s law, and the third equation is the plasticity condition, where 

F (p) is an experimentally determined plasticity function. 

The pressure p is assumed to depend on p and the direction of the process. A typical 

p (p) relation is shown in Fig. 1. 

2. We will construct some solutions of system (1.1) without attempting to satisfy the 

initial conditions. Let us write out the equations for the characteristics of system (1.1). 

By definition, the characteristics of a system of first-order differential eqaations are 
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curves x - f (t) having the following properties : if all the unknown function9 appearing ln 

the syatem are given on such a curve, the derivatives of these functiona will not be 

uniquely defined. Denoting differention along the cwve f by d/t%, for an arbitrary fanction 

w given on f we have 

(2.1) 

System (1.1) contains the six unknown8 u, v, u, 7, p, and y; the twenty partial de- 

rivatives are to be determined by the ten equation8 of system (1.1) and by ten equation0 

of the type (2.1). Since the resulting system is linear in the partial derivatives, all the 

derivatives can be determined uniquely when the determinant is nonzero. 

Thus, the condition for the characteristics f(t) ia the vanishing of this determinant, 

which haa the form 

dx dt 0 0 0 0 0 0 0 0 0 0 
0 0 dx dt. 0 00000 00 
0 0 0 0 dx dt 0 0 0 0 0 0 

0 0 0 0 0 0 dx dt 0 0 0 0 

0 0 0 0 0 0 0 0 dx dt 0 0 

0 0 0 0 0 0 0 0 0 0 dx dt 

0 piJ 0 0 --1 0 0 0 0 0’ 0 0’ 

0 0 0 po 0 0 -i 0 0 0 0 0 

a19 0 as@ 0 0 0 0 0 0 al00 0 i 

0110 0 a,‘0 0 0 0 0 1 0 UllJ10 0 0 

all1 0 a8l1 0 0 1 0 0 0 a1011 0 0 

KOOOOOOOOl 00 

(2.1$ 

a+P 
a19=Gmr, as 9=G&, F'W 9- - 

a10 -- 
2F@) 'Y 

all0 = GOfP Z, aglO = G 
C 

+ --I ) 1 al0 
F’ (~1 10=--I 

F (~1 F (~1 2F@) 

alll = G -d+ _; 

1 F (~1 1 =911 = ,f@ + p) 11 , 
-WY-@) 

al0 

Expanding this determinant (which in not difficult becaase of the large number of 

zeros) and setting it equal to zero, we obtain the eqnation for the characteristics of the 

system 

ad-{[I +k($-$-y]K +4qG+ $G}a2+ 

+ ‘G + GK Ls’ + h_ (~2 _ $)‘“I = 0 

PO(g)* = a*, I-& = 3, p& = k 

(2.2) 

It should be noted [4] that s’,< 1 and k < 1. When y 10, equation (2.2) redncea to 
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@ (a”, s) z .’ --[(I + ks) K + 1/S (4 - 2) Gl a2 + GKs (s + k) = 0 (2.3) 

Equation (2.2) has been obtained without any assumption whatsoever concerning the 

quantities K, G, and k. In the following we will assume that G < (1 + k) K; this assumption 

doer, not make the problem linear, because the second equation in (1.1) is nonlinear. More- 

over, we will restrict ourselves to the case where y I 0 and will only consider motions for 

which a is constant along the characteristics. Since a’ depends on s alone, the character- 

istics are straight lines. 

In view of the fact that the boundary conditions have the form of step functions, the 

motion can be assumed to be self-modelling. Under this assumption it is possible to const- 

ruct some solutions of system (1.1). 

As a consequence of the self-modelling, all quantities will depend only on x/t = (I/$. 

It is clear from (2.3) that o depends only on a, because all quantities appearing in (1.1) 

can be assumed to depend only on s. 

or 

From the self-modelling we have 

a 
-= 
at 

Therefore the firat equation (1.1) can be written in the form 

au da 
a2%=z 

Hence, making use of the third equation (1.1). we have, respectively, 

02 ap _ 3P --__--- 
K at at 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

Integration of (2.8) yields 

VP = k-(po) exp (\ $ (E) _ ;1”+ kc) K dE) 
and according to (2.2) we have 

b” 

(2.9) 

(2.10) 

The remaining quantities appearing in the system can be obtained by elementary 

methods. Replacing o in (2.Y) by the roots of equation (2.3), we obtain a family of solu- 

tions of system (1.1). which can be used for the construction of solutions of the boundary 

value problems. 
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Equation (2.3) has four roots : two are positive and two are negative. The positive 

ones correspond to waves propagating in the positive direction along the x-axis. Further, 

the solution obtained by substituting the larger positive root (2.3) into (2.9) will be called 

a longitudinal wave; that obtained by substituting the smaller one will be called a trans- 

verse wave. 

3. Now, let us examine equations (2.3). We will assnme that (2.3) is an eqi;ailon in aa. 

Let the larger root be denoted by 4 and the smaller one by a :. We will obtain an estimate 

of a’ by assuming that a* are functions of s. 

Solving (2.3). we obtain (3.1) 

?a2 = (1 + ks) K + 1/Q (4 - s2) C h {{(l f ks) K f ‘i, (4 - s2) cl2 - 4GKs (s f k).l” 

(3.1) 

&3 = (1 + ks) K + 1/3 (4 - s3) G f {[(I + lis )K - ‘i, (4 - s2) Cla + 4GKh)“’ 

for s < 1 

h E (1 + ks) ‘/, (4 - 3) - s (s + k) L 1!3 (i - s’) (4 + ks) > 0 (3.la) 

Therefore 

a? < (I f k-4 K, ap2 > (1 + ks) K 
(3.2) 

This follows from the fact that for the relation 

xl,2 = a + B * V(a - B)“+S2 (3.2a) 

we always have 

z2 > max (a, B) (3.2b) 

Further, a very elementary analysis shows that dal* / ds > 0 and a,* < G. One can 

divide the possible values of the parameters into three cases in accordance with the 

character of dd/ds. 

(1). If 

kK > 3 (If 4sk) G 

then daz2 I ds > 0 and a22 > K -+ a/& for all values of a. 

(2). If 

G>kK>;G 

(3.3) 

(3.4) 

then a22 > K + ‘13G and the derivative dai/ds changes sign in the interval [0, 11. 

(3). If 

‘,,C > kK (3.5) 
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then the derivative &,a/ ds < 0, a,2 < K + 4/3C when 1 > o > s*, where s* = LICK / 4~;. 

4. Now we will consider the limit of applicability of system (1.1). System (1.1) des- 

cribes the motion with plastic shear. The plasticity condition for shear will be A > 0. We 

will clarify when this condition can be employed. Making use of the third equation in 

aystem (1.1). we will writcl (2.6) in the form 

t [a2 - (1 -j- ;)K]g = +gIzg (4*1) 

FIG. 2 

With the aid of (2.4) and the first equation in (l.l), we 

transform the second equation in (1.1) into 

h=f($__l)$_ 
(4.2) 

1/j (C -a*) [a% - (s + k) K] au 
=- 

2 a% 1/l - s2 tiX 

where account has been taken of (4.1). 

By using (2.3) it is not difficult to show that 

(4.2) can be transformed into the form 

h =-+[a2- (K + +G)]$ (4.3) 

Thus, if the material is compressed, then during loading or unloading the condition 

h > 0 yields, respectively, 

a2 < K + 4/3G 

a2 > K f 412G 

(au / 62 < 0) 

(au / ar > 0) 

(4.4) 

(4.5) 

With a transverse wave (a 12 < G) the shearing occurs plastically during loading and 

elastically during unloading for all values of the parameters. With longitudinal waves in 

cases (I), (2) and (3)(s < s+) the shearing occurs plastically during loading and elastically 

during anloading; in case (3)(s > s+) the shearing is elastic during unloading and plastic 

during loading. These results differ from the results in [4] (p. 84) where an error has been 

made. 

5. Now we will construct the solution of the original boundary value problem by combin- 

ing transverse andlongitudinal waves and assuming that a uniform motion is also a solu- 

tion of (1.1). We will set y 3 0 and limit ourselves to the case where the loading branch in 

the (p, p)-diagram satisfied condition (3.5) and the unloading branch satisfies (3.3). In the 

(z, I) -plane we have the following picture : regions 1, 3, and 5 are regions of uniform move- 

ment, region 2 is the region of propagation of the longitudinal wave, and region 4 that of 

the transverse wave. In region 1 we have ~7 = uu and 7= 7,, and in region 5 we have 

D = ol, and T- T& ; in region 3 we will set ~7 = o,, and T= TV. Introducing the notation 

[F (p)] Y - X, the third equation in (1.1) uniquely determines the relation between u, 7 and z, 7. 
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Henceforth the state of stress will be described by the quantities z, 7, where we have set 

zi = [F (pi)]? 

If we consider the time variation of the state of stress with a fixed value of x, we 

see that at first it is constant. Then, as the longitudinal wave passes, the state changes 

t 
according to formulas (2.9) and (2.10) with aa = ai from 

I3 
x0, T,, to x1, v-~. Then, it remains constant until it is 

I 
changed by the transverse wave to zt, 7r and remains 

\ / 
constant. 

Formulas (2.9) and (2.10) can be regarded as para- 

metric representations of curves in the Cz, 7) -plane. 

There are two families of these curves. The first family 

E!C- 

corresponds to different transverse waves (a’ = a:) and 

the second family to longitudinal waves (aa = o:) ; the 

choice of a curve tom a family is made by fixing za. Let 

z us take the point (za, ~a) in the (2, T) -plane and draw 

the curves of the first and second family passing through 

FIG. 3 it. The point zu7a in Fig. 3 has been denoted by 1, and 

the curve l-4 represents the curve of possible passages 

with fixed x on a transverse compression wave, and curve l-3 on a longitudinal compress- 

ion wave, etc. The five possible cases correspond to point (zt, TJ lying in: (a) region 

FIG. 4 FIG. 5 

(1.3.4), (b) in region (1.2.3), etc. When the solution of the problem exists, point (zl, ~~1 

must also lie on curve l-3 and, in addition, the curve of the second family issuing from 

(zl, 7,) must pass through (z,, 7J. 

This means that 

z2 = z. exp Q2 (so, s2), z1 = z2 exp ml (s2, SJ 

Hence we obtain the equation for sp 
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z. exp [Q>, (sr, SJ + CD2 (so, sJ1 == z1 (5.1) 

When sr = a,, the left-hand aide of (5.1) is smaller than the right-hand aide, provided 

the left-hand side determines some point on the curve l-4 and (zI, 7,) lies above this 

curve. When So + 1, the left-hand aide of (5.11 tends to infinity. Therefore there is an s1 

such that the left-hand side is equal to the right-hand side. This settles the matter. 

Figures 4 and 5 show the dependence at a fixed station x of z and 7on time for the 

case considered. The remaining cases can be treated analogously. It is possible to treat 

other boundary value problems for system (1.1). Their solution is constructed in a similar 

way. 

Apart from the continuous solutions of (1.11 considered in section 3, it is possible 

to treat discontinuous solutions corresponding to shock waves. In accordance with the 

stability criterion, the velocity of a shock wave must be greater than the velocities of 

small disturbances ahead of the wave front and less than those behind the wave front. 

Hence it follows that a compressive shock wave exists if do/dp > 0 and a rarefaction shock 

wave exists if da/dp < 0. 

We have 

da 1 daa ds _=_-- 
dP 2a ds dp (5.2) 

From (2.7) and (3.2) we have ds/dp > 0 an a longitudinal wave and ds/dp < 0 on a trans- 

verse wave. Now, from (5.2) it is clear that a shock wave can exist only in case (2) and 

that it will be a rarefaction wave. 

In the physically important case where the loading part of the (p, @-diagram satisfies 

condition (3.51, and the unloading part satisfies (3.31, a shock wave cannot exist. 

In conclusion the author wishes to thank N.V. Zvolinskii for valuable advice and 

suggestions. 
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